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Abstract

This paper deals with the application of noising methods to a clique partitioning problem for a weighted graph. The aim is to
study different ways to add noise to the data, and to show that the choice of the noise-adding-scheme may have some impact on
the performance of these methods. Among the noise-adding-schemes described here, two of them are totally new, leading to the
“forgotten vertices” and to the “forgotten edges” methods. We also experimentally study a generic noising method that automatically
tunes its parameters. For each noise-adding-scheme, we compare a variant which inserts descents and a variant which does not.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In 1993, we designed a new metaheuristic for discrete optimization problems: the noising method [7], and then we
generalized it into a family of methods (mainly depending on the noise-adding-scheme but also on other components;
see [10] for a review of the principles and of the applications of the noising methods). As other metaheuristics (for
references, see for instance [27–29,1,32,24,19]), the noising methods are not designed to solve only one specific
problem, but different kinds of combinatorial optimization problems. Such a problem can be described as follows:

minimize f (s) for s ∈ S,

where S is the finite solutions set, and f (s) gives the value of the solution s. Note that sometimes S is not given
explicitly. Then, we assume that the solutions can be generated in a reasonable time (it will the case for the problem
addressed in this paper).

The noising methods are based on elementary (or local) transformations. An elementary transformation is an op-
eration which, when applied to a solution s of S, changes s into another solution s′ of S by modifying one (or some)
feature(s) of s without changing its global structure. For instance, if s is a binary string, an elementary transformation
may consist in changing one bit into its complement. The new solution s′ is called a neighbor of s. More generally, the
neighborhood N(s) of s is the set of solutions generated by applying the elementary transformation to s. For instance,
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if s is still a binary string of n bits and if the elementary transformation is the one evocated previously, N(s) is a set
of n binary strings: the n binary strings generated by changing one of the n bits of s. (See the above references for
more details about these basic definitions.) Of course, if we want to be able to explore the whole set S of solutions, and
not to be restricted to only a part of it, a desirable property of the transformation is that, when repeated suitably, this
transformation could lead from any element of S to any other one, or at least to an optimal solution.

Based on a given elementary transformation (or on a given neighborhood), we may design an iterative improvement
method, also called a descent method (or simply a descent in the sequel), or sometimes a quenching, for a minimization
problem. In a descent, we start from an initial solution s0 (for example randomly generated) and we generate a sequence
of solutions s1, s2, . . . , until a solution sq (where q is not known a priori) is reached with the following properties:

1. ∀i ∈ {1, 2, . . . , q}, si ∈ N(si−1);
2. ∀i ∈ {1, 2, . . . , q}, f (si) < f (si−1);
3. ∀s ∈ N(sq), f (s)�f (sq).

Property 3 means that a descent stops when a local (with respect to the adopted elementary transformation or to the
adopted neighborhood) minimum has been found.

The noising methods are based on the same principles but, instead of the genuine function f to minimize, we consider
that f has been perturbed by noises. Thus, as for a descent, the noising methods apply elementary transformations; but
to know whether such a transformation is accepted or not, we take these noises into account. This involves that a “bad”
transformation (that is, a transformation leading to an increase of f) can be accepted (as in simulated annealing for
instance) but also that a “good” one (that is, a transformation leading to a decrease of f) can be rejected because of the
noises (see Section 3 about how to add these noises). In order to go back to the genuine function f to minimize at the
end of the process, the range of the noises decreases during the run of the method, typically down to 0 (but it is often
possible to stop before, as shown in [9]): then there is no added noise and we deal with f itself.

It is also necessary to precise the way to explore the neighborhood. There are different possibilities: for instance,
the exploration is a random one in a classic simulated annealing while it is an exhaustive one in a classic tabu search.
In the noising methods, we assume that the neighborhood is implicitly ordered (even if we do not know this order
explicitly) and the neighbors (or rather the elementary transformations defining them) are scanned in this order, one
after the other. Then we adopt the first neighbor which is better (with respect to the perturbed function) than the current
solution. Notice that the implicit order is not necessarily the same for all the solutions, and even for a given solution,
it may change from one iteration to another (thus, if we scan twice the neighborhood of a same solution, its neighbors
are not necessarily ranked in the same order). This way of exploring the neighborhood is sometimes called a “cyclic
exploration” [15].

The aim of this paper is to compare the performance of 18 variants of noising methods derived from six noise-
adding-schemes and three variants for each noise-adding-scheme. One of the six noise-adding-schemes (called “basic”
in the following) has already been applied to the problem considered in this paper ([7]; see also [21,22,31] for similar
application). Three of them can be found in different papers dealing with noising methods, but were applied to other
problems (see [10]); they include a scheme near the one of a classic simulated annealing and another one close to the
one of the threshold accepting methods (by the way, note that De Amorim et al. [14], compared a classic simulated
annealing and a tabu search to this problem: according to their experiments, both methods lead to qualitatively similar
results for random graphs). The two others (called “forgotten vertices” and “forgotten edges”) are totally new, in the
sense that no paper dealing with them has been published yet. Similarly, the application of the “automatically tuned”
variant is new (the principles of this automatic way of tuning the parameters of the noising methods can be found
in [11]).

This study is done on a partitioning problem described below (Section 2); it arises in different contexts and it is also
one of our aims to be able to solve this problem as accurately as possible, especially for its applications in genomics
(see for instance [18,20]) where it is quite important to get close to an optimal solution within a “reasonable” CPU time.
In Section 3, we detail the 18 noising methods. Experimental results can be found in Section 5. We discuss them in
Section 6: broadly speaking, it appears that the new noise-adding schemes “forgotten vertices” and “forgotten edges”
give very good results, better than those provided by the other schemes, and that the “automatically tuned” variant gives
also very good results, almost as good as those that we compute with a sharp tuning of the parameters, while the user
has nothing to do to tune these parameters. Section 6 is devoted to the global conclusions.
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2. The clique partitioning problem

At the origin, the problem in which we are interested deals with the aggregation and the approximation of symmetric
relations into an equivalence relation. More particularly, we pay attention to two problems: the first one, arising
in cluster analysis and defined by Régnier [30], consists in the aggregation of equivalence relations into a unique
equivalence relation; the second one, arising in social sciences and set by Zahn [35], consists in the approximation
of a symmetric relation by an equivalence relation. In fact, these problems model other problems arising in different
contexts: classification, psychometry, genomics, and so on (for references upon these problems and their applications,
see for instance [2–4,23,18,20]).

Régnier’s problem arises for example in classification (clustering). In this problem, we deal with a set X of n objects
and a set of m criteria; each criterion is assumed to define an equivalence relation on X; the aim is to find a unique
equivalence relation defined on X which summarizes the m criteria as well as possible by minimizing the total number
of disagreements with respect to the m criteria. This problem is NP-hard when m is not fixed, and its status is not known
for a fixed value of m (see [2]).

Zahn’s problem consists in approximating a given symmetric relation S defined on a set X by an equivalence relation E
defined also on X which is at minimum distance to S with respect to the symmetric difference distance (which measures
the number of disagreements between S and E). This problem is NP-hard too [26].

These two problems can be represented by the following clique partitioning problem (CPP in what follows; see
[33,34] for details). In this CPP, we consider a weighted non-oriented graph G = (X, U, w) with n vertices; this graph
is complete; a positive or negative integer w(x, y) = w(y, x) is associated with each edge {x, y} ∈ U(x �= y); our
CPP consists in finding a partition of X into k(G) cliques C∗

1 , C∗
2 , . . . , C∗

k(G) (hence the number k(G) of cliques is not
fixed a priori and depends on G, or more precisely on n and w; for this reason and because of the sign of the weights,
CPP is not the well-known k-Cut problem), in order to minimize the sum of the weights of the edges with their two
extremities in a same clique, that is the function f defined for any partition (C1, C2, . . . , Ck) of X by

f (C1, C2, . . . , Ck) = 1

2

k∑

i=1

∑

(x,y)∈Ci×Ci
x �=y

w(x, y).

This CPP is also NP-hard (see [33,34]). To formulate Régnier’s problem and Zahn’s problem as instances of CPP, we
build a weighted complete graph as follows (see [33,34] details). The vertex set will be the set X of Régnier’s or Zahn’s
problems. For Régnier’s problem, the weight of an edge {x, y} (with x �= y) is given by the difference m−2mxy , where
mxy denotes the number of criteria for which x and y are together in a same class (this weight is also the difference
between the number, equal to m − mxy , of criteria for which x and y are not together in a same class, and mxy); note
that mxy is an integer between −m and m. For Zahn’s problem, let S be the symmetric relation of the instance; the
weight of an edge {x, y} (with x �= y) is −1 if x and y are in relation with respect to S and +1 otherwise. Then the
search of an equivalence relation solution of Régnier’s or Zahn’s problems consists in both cases in partitioning the
weighted complete graph into disjoint cliques in order to minimize the sum of the weights of the edges with their two
extremities in a same clique; hence our partitioning problem. By the way, note that minimizing the innerclass weights
as we do is the same as maximizing the outerclass weights (because the sum of these weights is a constant). Moreover,
as the signs of the weights are not necessarily the same for all weights, CPP is also equivalent to the maximization of
the innerclass weights or to the minimization outerclass weights (it is sufficient to multiply all the weights by −1).

3. The noising methods applied to the clique partitioning problem

To apply the noising methods to the clique partitioning problem, we must first precise the elementary transformation
used to define the neighborhood. In our work, it consists in moving a vertex from its current class to another one, which
can be empty if we want to create a new class. Below, when we speak about “each current class C ”, we mean in fact
“each class of the current solution, including the empty class”, and when we consider the possibility to move a vertex
from its current class to another one, this one can be the empty class. This transformation was already suggested by
Régnier [30]. Note that the size of the neighborhood of a solution is not always the same during the run of the algorithm:
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Fig. 1. Decreasing of the noise-rate for the variant B.

it is equal to (k + 1)n − �, where k denotes the number of classes (which is not fixed) of the current solution, n the
number of vertices and � the number of vertices alone in their classes.

The exploration of the neighborhood is done as follows.
In a descent, to look for and to choose an improving elementary transformation, we consider the vertices one by one.

For each vertex x, we compute the best class for x among the classes of the current solution. More precisely, for any
class C of the current solution, we set W(x, ∅) = 0, and, for C �= ∅, W(x, C) = ∑

y∈C
y �=x

w(x, y). It is easy to see that

moving x from its current class Cx to another one C involves a variation for f of the quantity W(x, C)−W(x, Cx); thus
moving x from Cx to C leads to an improvement if W(x, C) < W(x, Cx). The class of the current solution in which it
is better to put x (when nothing else is changed) is called the best class of x; it is the class C∗ for which W(x, C∗) is
minimum (notice the inequality W(x, C∗)�0 since W(x, ∅) = 0). So, the complexity of computing the best class of
any vertex can be done in O(n).

From the current solution, when we discover that a vertex is not in its best class, we move it towards its best class
and so the current solution changes; then we apply the same process to the new current solution. The exploration of
the neighborhood is a “cyclic” one (see [15]): initially, the vertices are ranked in a random order generated uniformly;
all the vertices are tried once before any is considered for a second time and an improving transformation is adopted
as soon as it has been discovered; this process is applied until a complete cyclic exploration of the neighborhood has
been completed without finding any possible improvement; then all the vertices are in their best classes (remember
that it means only that moving any single vertex from its current class to another one does not lead to a better solution)
and the current solution is a local minimum with respect to the neighborhood generated from the adopted elementary
transformation.

When noises are added (in accordance with the schemes described below), the search follows the same features, but
with respect to the perturbed quantities W. Moreover, because of the noises, we cannot adopt the same criterion to stop
a noising method as for a descent, and thus it is necessary to fix the number of “perturbed iterations”; this number is
given by the user or is computed automatically for the variant A (for “automatic”; see below) according to the CPU
time that he or she wishes to spend in order to solve his or her problem. At the beginning of each cyclic exploration of
the neighborhood, the vertices are ranked in a new random order before being scanned.

We may now describe the different noising methods that we study in this paper. They are based on different types of
noise-adding-schemes and, for each type, we consider three variants.

3.1. Variant B

In the first variant, the noise rate always decreases linearly down to 0. The name of the methods following this scheme
will always end with B (B stands for “basic”). Fig. 1 illustrates the decreasing of the noise rate for this variant B.

3.2. Variant D

In the second variant, the noise rate decreases also linearly but “unperturbed” descents are inserted from time to
time during the noise-adding process; the name of these methods will always end with D. From our experiments on
the partitioning problem and on other combinatorial optimization problems (see [10]), it appears that performing four
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Fig. 2. Decreasing of the noise-rate for the variant D.
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Fig. 3. Evolution of the noise-rate for the variant A.

cyclic explorations of the neighborhood with respect to the perturbed quantities W between two (unperturbed) descents
seems to be a good choice. So it is what we do here. It means that, between two descents, each vertex is scanned four
times in order to find its best perturbed class in the current solution. Fig. 2 illustrates the decreasing of the noise rate
for the variant D: when a descent is performed, it is in fact the same as applying a noising method with a noise rate
equal to 0.

3.3. Variant A

The third variant is an automatically tuned version of the noising methods with the insertion of unperturbed descents
as in the second variant; the name of these methods will always end with A (for “automatic”). The goal of these variants
is to find appropriate values for the initial noise rate and for the number of iterations which will be performed. Thus,
the only parameter given by the user in these variants is the CPU time that he or she wishes to spend for his or her
problem. It is a generic automatic method which can be applied with various noises or to various problems by changing
only the type of noise or the characteristics defining the problem; no parameter of this generic method is changed from
one noise-adding-scheme to another one or from a problem to another one. The principle of this automatically tuned
variant consists in applying a noising method several times, in the sense that the noise rate decreases several times from
a maximum rate down to 0. The duration of each noising method is twice the one of the noising method applied just
before the current one, while the first noising method is very short. The aim of this repetition of noising methods is
to compute a suitable initial noise rate: this one is improved during the process. We cannot depict here all the details
of these automatically tuned noising methods, but the interested reader will find them in [11] (in which we study the
behavior of this automatic variant of the noising methods when applied to several combinatorial optimization problems,
including the well-known Traveling Salesman problem). Fig. 3 illustrates the evolution of the noise rate during the run
of this variant.

In the noising methods, noises are sometimes added to the data, or directly to the variations of f when we consider a
neighbor of the current solution; they can be added in an absolute or a relative way; they can call on a random variable
following a uniform law, or a Gaussian one, or another one (see [10]). In addition to these possibilities, we consider
here a new way to design noising methods (it appeared in 1999, see [8] similar ideas can be found in [6]); it consists in
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“forgetting” a part of the data (here, vertices or edges of the considered graph); this forgotten part decreases during the
run of the method in order to deal with all the data in the last iterations…It corresponds anyway to different probability
laws to know whether a transformation is accepted and these laws are always computed from something which can
be considered as a noise. It is worth noticing that, at least from a theoretical point of view, these different ways of
perturbing f can be linked together, as shown in Charon and Hudry [10]; anyway, in this case, it is not always easy to
find the equivalent probability laws which govern the choices of the noises.

We describe below how to choose the noises. As said above, when we are looking for the next elementary transfor-
mation to apply, we consider the vertices one by one; for each vertex x, we compute its best perturbed class, that is
the class C∗ which corresponds with the minimum value of a quantity denoted below by Wp(x, C) over the classes of
the current solution and which depends on the added noises; then x is moved into its best perturbed class if x does not
belong already to this class in the current solution.

For each type of noise, we have three methods according to the three variants: basic (letter B), with descents (letter
D), automatic (letter A). In all the methods that we are going to describe, there is a variable called rate (the rate of
noise, or the rate of forgotten vertices, or the rate of forgotten edges) which decreases linearly during the process (or
during the different parts of the process for automatic methods) from a maximum rate max_rate down to 0.

3.4. Uniform noise: methods UB, UD, UA

In the methods UB, UD and UA (U for “uniform”), for a vertex x and for each current class C, Wp(x, C) is given
by the sum of W(x, C) and a noise � × rate where � is randomly chosen in the interval [−1, 1] with a uniform law at
each time that we consider x and C:

Wp(x, C) = W(x, C) + � × rate.

3.5. Logarithmic noise: methods LB, LD, LA

In the methods LB, LD and LA (L for “logarithmic”), for a vertex x and for each current class C, we randomly draw
a number � in the interval ]0, 1] with a uniform law and we set:

Wp(x, C) = W(x, C) + rate × log(�).

There is a relationship between this noise and simulated annealing (see [10] for more details), since we have the
equivalence:

Wp(x, C) < 0 ⇔ � < e−W(x,C)/rate.

Then, the noise rate rate used here can be considered as the usual temperature of simulated annealing. Among these
variants, LB gives the scheme of a classic simulated annealing but with a cyclic exploration of the neighborhood (which
is quite better, at least for this problem, than a random exploration; see [7], and more generally see references in [10]).
Anyway, for homogeneity’s sake, we go on to call it LB (instead of SA for instance).

3.6. Relative uniform noise: methods RB, RD, RA

In the methods RB, RD and RA (R for “relative”), noises modify the weights of the edges with the following pattern.
For a vertex x and for each current class C, we set:

Wp(x, C) =
∑

y∈C
y �=x

w(x, y) × (1 + rate × �y),

where �y is chosen randomly, with a uniform law, in the interval [−1, 1].
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3.7. Threshold methods TB, TD, TA

The methods TB, TD and TA (T for “threshold”) come from the threshold accepting method proposed by Dueck
et al. [16,17] (see also [10]; for details on the relationship between the threshold accepting method and the noising
methods). For a vertex x, we compute all the values W(x, C) and we select all the classes C verifying:

W(x, C) < W(x, Cx) + rate,

where Cx denotes the current class of x. The class in which x is moved is chosen randomly with a uniform distribution
among all the selected classes.

3.8. Forgotten vertices methods FVB, FVD, FVA

In the methods FVB, FVD and FVA (FV for “forgotten vertices”), at the beginning of each cyclic exploration of the
neighborhood, we randomly select vertices which will be forgotten during this exploration. The number of forgotten
vertices at each exploration is given by the product of rate by the number of vertices of G. Clearly, the maximum rate,
max_rate, cannot be higher than 1. In our experiments, we tried the values 0.1, 0.2, . . . , 0.8 and 0.9 for max_rate; we
report below only the best results that we obtained.

When we perform the cyclic exploration of the neighborhood, we do not search the best perturbed class for a forgotten
vertex and, for a not forgotten vertex x and for each class C, we compute:

Wp(x, C) =
∑

y∈C
y �=x,y not forgotten

w(x, y),

and the best perturbed class of x is the class for which this value is minimum.

3.9. Forgotten edges methods FEB, FED, FEA

The methods FEB, FED and FEA (FE for “forgotten edges”) are also new. They proceed as FVB, FVD and FVA but,
instead of forgetting vertices, they forget edges. Then, for each vertex x and for each class C of the current solution,
we compute:

Wp(x, C) =
∑

y∈C
y �=x, {x,y} not forgotten

w(x, y).

The probability that a given edge {x, y} is forgotten is equal to rate: at each time that an edge is considered, we
choose a number � in the interval [0, 1] randomly, with a uniform law; if � is less than rate, the edge is forgotten.

As for FVB, FVD and FVA, we tried the values 0.1, 0.2, . . . , 0.8 and 0.9 for the maximum rate max_rate of forgotten
edges; here also, we report below only the best results that we obtained.

4. Experimental results

The experiments that we report here have been done on seven types of graphs (they can be found at the URL
http://www.infres.enst.fr/∼charon/partition/); for each type, we did many tests on many graphs: we obtained the same
qualitative conclusions over the different tests and the different graphs for each type; for this reason, we detail here
the results obtained for only one graph of each type. Anyway, once again, the qualitative conclusions are corroborated
by many other experimental results. The weights of the studied graphs are always integers. The results given below
are averages on N = 100 trials, except for the graph called rand100-100, for which we performed N = 1000 trials. In
each case, the initial solution is randomly computed. For a same graph, each method has been given the same CPU
time. The time limits are set in such a way that, according to our experiments, nothing noticeable would happen after
this limit. For the methods which depend on parameters, we tried to find the best parameters; the reported results have
been obtained from these “best” parameters. Note that previous experiments done on the Traveling Salesman Problem

http://www.infres.enst.fr/~charon/partition/
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Table 1
Characteristics of the 19 studied methods

Basic With descents Automatic tuning

Repeated descents Q
Uniform noise UB UD UA
Relative noise RB RD RA
Logarithmic noise LB LD LA
Threshold noise TB TD TA
Forgotten vertices FVB FVD FVA
Forgotten edges FEB FED FEA

[9] show that it is not necessary to tune the parameters of a noising method very sharply (it is why we may try to tune
the noising methods automatically): for instance, tuning the initial noise rate at 10% or even 20% still gives very good
results (better than those provided by a classic simulated annealing for example).

We also performed repeated descents (quenching) from random initial solutions during the same CPU time and kept
the best value obtained by these descents; this repetition of descents is called “method Q” below. In this method, there
is only one parameter: the number of descents which are repeated; this number is fixed so that the CPU time of Q is
similar to the CPU time devoted to each one of the other methods. Otherwise, the features of Q are the same as for the
other methods (same elementary transformation, same way of exploring the neighborhood; of course, the variants A,
B, D are not relevant for Q).

For some methods and some graphs, the results that we obtained are not reported in our graphics, because, if we put
them, the ordinates of the other results are too close one to the other and so it is difficult to see any difference between
them; thus, these results are given in a table.

It is well-known that, when the number N of trials is great, the random variable associated with the average of the
results provided by a method over these trials tends to follow a Gaussian law of parameters m0 and �0/

√
N , where m0

and �0 are respectively the average and standard deviation of the random variable associated with one experiment. The
theoretic average that we would like to know is m0. Because of this Gaussian law, m0 can be located in the interval
[m − 1.96�/

√
N, m + 1.96�

√
N ] with a probability equal to 0.95, where m and � are the average and the standard

deviation computed from the N trials: this gives the so-called “confidence interval at 95%”. In the graphics below, for
each one of our seven graphs and for each method, we have drawn segments indicating the confidence interval at 95%;
the middle of this interval gives the computed average m. Moreover, under the name of each method in the graphics, we
give the number of times that the best known solution value (obtained from these trials or from others with greater CPU
times) has been found by the method during the N trials. Notice that the studied methods are ranked in the graphics
according to their results: the method with the best average is on the left, while the one with the worst average (except
the methods which do not appear in the graphics) is on the right.

All the tests have been done on a Sun station (SunOS Ultra 5, Unix Solaris 5.9, 500 MHz, memory of 128 Mo) with
a program written in C language.

Before detailing the results, we recall the names of the 19 methods that we studied in Table 1. Remember that LB is
in fact a simulated annealing and that the methods TB, TD and TA come from the threshold accepting method.

For the graphs that we describe now, we do not know the optimal value with an absolute certainty. But experiments
done with much greater CPU times (up to several days) show that what we call “best known value” below seems to be
in fact the minimum value.

4.1. rand100-100

The graph rand100-100 has 100 vertices; the weights of its edges are randomly chosen between −100 and 100 with
a uniform law. The CPU time given to each method is 7 s. The best known solution value is −24 296. For this graph
(and only for this one), 1000 trials have been performed (Fig. 4, Table 2).
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-24296

-24291

-24286

-24281

-24276

-24271

FVD FVA FED FEA FVB RA RD UD UA LD LA TD TA LB FEB RB
536 304 381 317 369 302 276 419 342 323 282 452 254 297 203 144

Fig. 4. Results for rand100-100.

Table 2
Results of TB, UB and Q for rand100-100

Other results TB UB Q

Average −24 248 −24 221 −23 906.5
Confidence interval at 95% [−24 251, −24 245] [−24 225, −24 217] [−23 915, −23 898]
Best found value −24 296 (98 times) −24 296 (62 times) −24 296 (1 time)

-152709

-152209

-151709

-151209

-150709

-150209

FVD FVB FVA FED FEA FEB RB UD UA TARARD TD LA UB LD LB
77 55 60 52 64 41 44 44 43 23 17 9 19 3 8 10 1

Fig. 5. Results for rand300-100.

Table 3
Results of TB and Q for rand300-100

Other results TB Q

Average −149 216 −145 202
Confidence interval at 95% [−149 435, −148 996] [−145 421, −144 983]
Best found value −152 159 −149 444

4.2. rand300-100

The graph rand300-100 has 300 vertices; the weights of its edges are randomly chosen between −100 and 100
with a uniform law. The CPU time given to each method is 40 s. The best known solution value is −152 709
(Fig. 5, Table 3).

4.3. rand500-100

The graph rand500-100 has 500 vertices; the weights of its edges are randomly chosen between −100 and 100
with a uniform law. The CPU time given to each method is 65 s. The best known solution value is −309 125
(Fig. 6, Table 4).
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FVD UD FED FVB RD FEB FVA UA FEARBUB
-308000

-307500

-307000

-306500

-306000

-305500

LD RA TD TA LA
1 1 00 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Results for rand500-100.

Table 4
Results of LB, TB and Q for rand500-100

Other results LB TB Q

Average −304 220 −298 683 −288 401
Confidence interval at 95% [−304 451, −303 989] [−299 242, −298 124] [−288 766, −288 036]
Best found value −306 932 −304 450 −292 985

-7716

-7712

-7708

-7704

-7700

-7696

-7692

FEA TD RB UB TA FEBFVD FVA UA RD LA UD FVBFED LD RA
4 1 22 3 0 1 3 0 2 6 0 2 0 1 2

Fig. 7. Results for rand300-5.

Table 5
Results of LB, TB and Q for rand300-5

Other results LB TB Q

Average −7685.2 −7579.1 −7305.4
Confidence interval at 95% [−7693, −7677.4] [−7592.4, −7565.8] [−7315.3, −7295.5]
Best found value −7717 −7729 −7449

4.4. rand300-5

The graph rand300-5 has 300 vertices; the weights of its edges are randomly chosen between −5 and 5 with a
uniform law. The CPU time given to each method is 40 s. The best known solution value is −7732 (Fig. 7, Table 5)

4.5. zahn300

The graph zahn300 has 300 vertices; the weights of its edges are randomly chosen in the set {−1, 1} with a uniform
law; thus this graph is an instance of the problem of Zahn [35]. The CPU time given to each method is 50 s. The best
known solution value is −2504 (Fig. 8, Table 6).
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-2500

-2496

-2492

-2488

-2484

UB LD LA TD TAFVD FED FVB FVA RA RB UA FEB FEAUDRD
23 18 1819 27 25 9 17 2 9 10 2 4 3 2 2

Fig. 8. Results for zahn300.

Table 6
Results of LB, TB and Q for zahn300

Other results LB TB Q

Average −2479.8 −2421.1 −2341.35
Confidence interval at 95% [−2482.3, −2477.3] [−2426.8, −2415.4] [−2345, −2337.7]
Best found value −2503 −2495 −2391

-17560

-17540

-17520

-17500

-17480

FVD RD RA FVA FEA RB UD FVB UAFEBFED TA UB LD TD LA
5 3 11 2 2 1 2 2 1 2 1 1 1 0 1

Fig. 9. Results for sym300-50.

Table 7
Results of LB, TB and Q for sym300-50

Other results LB TB Q

Average −17443.8 −17222.7 −16623
Confidence interval at 95% [−17459.4, −17428.2] [−17254.8, −17190.6] [−16649, −16597]
Best found value −17 586 −17 556 −16 942

4.6. sym300-50

The graph sym300-50 has 300 vertices. To generate it, we first choose 50 symmetric relations defined on the vertices
of sym300-50; for each relation, the probability for a given pair of vertices to be related is equal to 0.5; then the weight
w(x, y) of the edge {x, y} is the difference between the number of relations for which x and y are not related and the
number of relations for which they are related (thus the weights are between −50 and 50; see Section 2). The CPU
time given to each method is 35 s. The best known solution value is −17 592 (Fig. 9, Table 7).
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-32164

-32114

-32064

-32014

-31964

-31914

FVD RD FED FVB FEA RA UA RB UDFEBFVA TA LA LD LB UB TD
97 92 9598 94 93 92 94 82 84 55 66 43 9 11 34 27

Fig. 10. Results for régnier300-50.

Table 8
Results of Q and TB for régnier300-50

Other results Q TB

Average −31 796 −31 482
Confidence interval at 95% [−31 833, −31 759] [−31 549, −31 415]
Best found value −32 164 (1 time) −32 164 (3 times)

Table 9
Ranks of the 19 methods for the 7 graphs

UB UD UA LB LD LA RB RD RA TB TD TA FVB FVD FVA FEB FED FEA Q

rand100-100 18 8 9 14 10 11 16 7 6 17 12 13 5 1 2 15 3 4 19
rand300-100 15 10 11 17 16 14 9 2 7 18 13 12 3 1 4 8 5 6 19
rand500-100 2 3 10 17 12 16 7 6 13 18 14 15 5 1 9 8 4 11 19
rand300-5 14 7 3 17 9 6 13 5 10 18 12 15 8 1 2 16 4 11 19
zahn300 12 7 9 17 13 14 8 2 6 18 15 16 4 1 5 10 3 11 19
sym300-50 13 9 11 17 14 16 8 3 4 18 15 12 10 1 5 7 2 6 19
régnier300-50 16 11 9 15 14 13 10 3 8 19 17 12 5 1 2 7 4 6 18

4.7. régnier300-50

The graph régnier300-50 has 300 vertices. To generate it, we first choose 50 bipartitions defined on the vertices of
régnier300-50; for each bipartition, the probability for a given vertex to be in the first cluster of the bipartition is equal
to the probability to be in the other cluster of the bipartition (and thus is equal to 0.5); as for sym300-50, the weight
w(x, y) of the edge {x, y} is the difference between the number of bipartitions for which x and y are not together and
the number of bipartitions for which they are together (thus the weights are still between −50 and 50); this problem is
an instance of the problem of Régnier. The CPU time given to each method is 20 s. The best known solution value is
−32 164 (Fig. 10, Table 8).

5. Analysis of the results

Table 9 shows the rank of each method in the seven orders specified above.
From these results, it appears that the average value provided by FVD is always the best and that the method is very

steady: its standard deviation is the smallest (in other words, the length of the 95% confidence interval is the smallest).
Moreover, it always found what seems to be an optimal solution during the trials (even if the frequency of finding such
a solution may be greater for other variants, depending on the considered graph), which is not always the case for LB
(and for some other variants). For the other methods, the situation is not so simple: their ranks are not always the same.
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Table 10
Borda scores of the 19 methods

UB UD UA LB LD LA RB RD RA TB TD TA FVB FVD FVA FEB FED FEA Q

Borda scores 90 55 62 114 88 90 71 28 54 126 98 95 40 7 29 71 25 55 132

Thus, in order to be able to compare them, we apply some classic methods of ordinal data analysis. There are different
ways to aggregate m linear orders Ok (1�k�m) into a linear order O so that O summarizes the orders Ok (1�k�m)

as well as possible (see for instance [3]). We successively apply three procedures, well-established and well-known in
the theory of ordinal aggregation for their axiomatic properties, respectively, due to Borda [5] and Kemeny [25] (in
fact, it seems that it was already suggested by Condorcet [12]), or derived from the one proposed by Copeland [13].

5.1. Borda’s procedure

In the procedure of Borda, a method ranked at the kth place in an order is given k points. Then, for each method,
we compute the total number that it receives; this number is the Borda score of the method; with respect to the values
reported in Table 9, the Borda score of a method is the sum of the values located in the column associated with this
method. Finally, we rank the methods according to the increasing Borda scores; the linear orders that we obtain are the
solutions O (with respect to this procedure) that we look for. Here, the Borda scores of the 19 methods are displayed
in Table 10.

Thus, the orders provided by Borda’s procedure are the linear extensions of the following total preorder:

FVD>FED>RD>FVA>FVB>RA>(FEA=UD)>UA>(FEB=RB)>LD>(LA=UB)>TD>TA>LB>TB>Q.

5.2. Copeland’s procedure

Let � and �′ be two methods, and let m��′ be the number of orders in which � is placed before �′. For each method
�, we compute the quantity �(�) defined by �(�) = ∑

�′(m��′ − m�′�). Then, we rank the methods according to the
decreasing values of �. Here, we obtain the linear orders which are the linear extensions of the following total preorder:

FVD>FED>RD>FVA>FVB > RA>(FEA=UD)>UA>(FEB = RB)>LD>(LA=UB)>TA>TD>LB>TB>Q.

This preorder is the same as the one found by Borda’s procedure, except that TA and TD do not appear in the same
order.

5.3. Kemeny’s procedure

Another way to aggregate linear orders consists in looking for a linear order which minimizes the total number of
disagreements with respect to the given orders (as in Section 2, this number of disagreements is given by the symmetric
difference distance). So, in a way, this provides the best compromise of the individual rankings in order to obtain a
global ranking. This procedure leads here to three linear orders, which differ only by the places assigned to FVA, FED
and RD:

FVD>FVA>FED>RD>FVB>FEA>RA>UD>FEB>RB>UA>LD>TA>LA>UB>TD>LB>TB>Q,
FVD>FED>RD>FVA>FVB>FEA>RA>UD>FEB>RB>UA>LD>TA>LA>UB>TD>LB>TB>Q,
FVD>RD>FVA>FED>FVB>FEA>RA>UD>FEB>RB>UA>LD>TA>LA>UB>TD>LB>TB>Q.

There is a great similarity between the ranks of the 19 methods over the previous three procedures: these ranks
are not exactly the same, but almost. If we consider a less ordinal point of view and if we pay attention to the
values provided by the 19 methods, we may notice that all the variants lead to solutions with very near values,
which is not surprising since a method like LB (simulated annealing) already gives very good solutions; but on the
other hand, it is well-known that it is quite difficult to improve already good solutions, as those found by simu-
lated annealing. Thus, to measure such an improvement (if any), let fM be the average value provided by method
M (with M ∈ {FVB, FVD, FVA, FEB, FED, FEA, RB, RD, RA, UB, UD, UA, LB, LD, LA, TB, TD, TA, Q}) for a
given graph; Table 11 shows the values (fM −fLB)/(fLB −fQ) for M ∈ {FVB, FVD, FVA, FEB, FED, FEA, RB, RD,
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Table 11
Improvements brought to LB by each method with respect to the gap between Q and LB, in percentage

M rand100-100 rand300-100 rand500-100 rand300-5 zahn300 sym300-50 régnier300-50

FVD 5.2 41 23 7.5 14 13 114
FED 4.7 38 22 5.3 12 13 112
RD 4.1 39 21 5.2 12 11 112
FVA 4.9 38 20 6.3 11 11 113
FVB 4.2 38 22 5.1 11 10 108
FEA 4.5 37 17 4.7 9 11 106
RA 4.2 36 15 4.9 11 11 105
UD 3.1 18 23 5.1 11 10 86
FEB −0.3 34 20 2.9 9 11 105
RB −0.6 34 21 4.2 10 10 94
UA 2.9 17 17 5.7 10 8 100
LD 2.6 5 16 5.1 8 7 21
TA 1.2 11 10 3.3 3 7 71
LA 2.4 8 10 5.2 6 6 43
UB −14.6 7 23 3.4 9 7 −19
TD 1.6 8 13 4.4 6 6.5 −23
LB 0 0 0 0 0 0 0
TB −7.3 −24 −35 −28 −43 −27 −283

RA, UB, UD, UA, LB, LD, LA, TB, TD, TA}, expressed in percentage. In other words, Table 11 measures the improve-
ment brought by method M to simulated annealing (LB) when we use the improvement brought by LB to repeated
descents (Q) as the unit.

From these experiments, we may draw the following global remarks (they hold a priori for the studied instances, but
they are strengthened by other instances of the same problem not reported here; anyway, it would be unwise to conclude
that they would stand for every combinatorial optimization problem; moreover, even for this problem, remember that
the studied instances are randomly generated, and maybe the behavior of some methods would be slightly different if
applied to another kind of instances; anyway, we think that the following conclusions remain valid in general):

• the “forgotten vertices” method FVD is always the best (in these experiments) and it always finds what seems to be an
optimal solution at least once; one possible explanation of this phenomenon is that more iterations of this variant can
be run (and thus more solutions can be evaluated) because the neighborhood is only partially explored and therefore
more neighbors can be scanned, and because computations are faster since less data need to be considered;

• the variants FV, FE, R and, to a lower extent, U of the noising methods behave well with respect to simulated annealing
(especially when there is no descent inserted, as in LB) or to the threshold accepting methods, which anyway provide
very good results;

• variants D and A are rather better than the variant B: this shows that it is almost always useful to insert descents
during the process;

• variantA provides very good solutions: it is a strong incentive for paying attention to such a way to tune the parameters
of metaheuristics automatically;

• still globally, the ranking of the noise-adding-schemes is: FV > FE > R > U > L > T > Q. More precisely, FV is the
best, FE and R are rather similar and much better than the others (except FV), U is rather Good, L and T appear as
(relatively) rather bad (especially when descents are not inserted, i.e. TB), and Q is far away.

6. Conclusion

From this work, it appears that, for the studied clique partitioning of a weighted graph, it can be worth trying several
noise-adding-schemes. We do not present here results computed when the noise rate does not decrease down to 0;
nevertheless, the efficiency of some methods when applied to some instances would be improved if the noise rate is
not decreased down to 0 (as it was the case for the experiments done on the Traveling Salesman Problem in [9]).
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We may notice the good results provided here by the automatic variant of the studied noise-adding-schemes: they
are not far from those obtained by the corresponding D-methods. The main advantage of this automatic version is that
it is not necessary to spend time to find a good tuning of the usual parameters: here, the user has just to give the CPU
time that he or she wishes to spend to solve his or her problem, and the algorithm computes proper parameters of the
noising method in the same time as it computes the solution itself.

More generally, the variants developed in this paper may provide better results than some other approaches used to
tackle hard problems, like simulated annealing (or the threshold accepting algorithm), though this method is already
very good. Of course, because of the efficiency of simulated annealing, the improvements brought by FVD (the
“forgotten vertices with descents” method) or by the other variants to LB (a classic simulated annealing but with a
cyclic exploration of the neighborhood) are not very high. But, because it is essential in some fields like genomics to
be able to get always closer to the optimal solution than what can be currently done, even if it is only by a little bit, we
think that the search and the study of more efficient variants deserve interest. In future, such a search will remain one
of our motivations for looking for other variants of the noising methods and, more generally, of metaheuristics.
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